ConcurrentHashMap源码解析
面试常见问题
ConcurrentHashMap实现原理
ConcurrentHashMap如何保证线程安全
本文基于JDK1.8
一、构造方法和基本属性
JDK8中ConcurrentHashMap参考了JDK8 HashMap的实现,构造方法和基本属性与HashMap大致相同,可参考HashMap源码解,以下主要列举不同的地方。
/**
* Encodings for Node hash fields. See above for explanation.
*/
static final int MOVED = -1; // hash for forwarding nodes
static final int TREEBIN = -2; // hash for roots of trees
static final int RESERVED = -3; // hash for transient reservations
// Hash节点正常可用位
static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
二、主要方法解析
2.1 spread(int h)
/**
* 这里的spread方法作用与HashMap中的hash方法相同,//先对低16位进行扰动处理,然后屏蔽符号位,结果为32 * 位int型非负数
*/
static final int spread(int h) {
return (h ^ (h >>> 16)) & HASH_BITS;
}
2.2 tabAt(Node<K,V>[] tab, int i)
/**
* 该方法通过Unsafe类直接进行内存寻址定位,用来返回节点数组的指定位置的节点的原子操作
*/
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}
2.3 casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v)
/**
* 比较交换(CAS)
*/
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v) {
return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
}
2.4 setTabAt(Node<K,V>[] tab, int i, Node<K,V> v)
/**
*
*/
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
}
2.5 put(K key, V value)
/**
* Maps the specified key to the specified value in this table.
* Neither the key nor the value can be null.(键值都不能为空)
*
* <p>The value can be retrieved by calling the {@code get} method
* with a key that is equal to the original key.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with {@code key}, or
* {@code null} if there was no mapping for {@code key}
* @throws NullPointerException if the specified key or value is null
*/
public V put(K key, V value) {
return putVal(key, value, false);
}
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
// 键值都不能为null,否则抛出NPE异常
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f;
int n, i, fh;
if (tab == null || (n = tab.length) == 0)
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// 如果i位置没有数据,则比较并交换
if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
/*
* 如果检测到某个节点的hash值是MOVED,则表示正在进行数组扩张的数据复制阶段,
* 则当前线程也会参与去复制,通过允许多线程复制的功能,以此来减少数组的复制所带来的性能损失
*/
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
// 如果在这个位置有元素的话,就采用synchronized的方式加锁
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) {// 标识该节点为列表节点
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
// 如果key相同,则覆盖旧value值
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
// 插入列表尾部
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key, value, null);
break;
}
}
}
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
// 红黑树结构旋转插入
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
// 如果列表长度大于等于8则转换为红黑树
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
// 统计size,并检测是否需要扩容
addCount(1L, binCount);
return null;
}
2.6 initTable()
/**
* Initializes table, using the size recorded in sizeCtl.
*/
private final Node<K,V>[] initTable() {
Node<K,V>[] tab;
int sc;
// 如果table为null则进行初始化
while ((tab = table) == null || tab.length == 0) {
//sizeCtl<0表示其他线程已经在初始化了或者扩容了,挂起当前线程
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
//CAS操作SIZECTL为-1,表示初始化状态
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
// 初始化后,sizeCtl长度为数组长度的3/4
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
2.7 treeifyBin(Node<K,V>[] tab, int index)
/**
* Replaces all linked nodes in bin at given index unless table is
* too small, in which case resizes instead.
* 当数组长度小于64的时候,扩张数组长度一倍,否则的话把链表转为树
*/
private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) {
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
// 数组长度小于64,则扩容1倍
tryPresize(n << 1);
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
synchronized (b) {//使用synchronized同步器,将该节点出的链表转为红黑树
if (tabAt(tab, index) == b) {
TreeNode<K,V> hd = null, tl = null;
for (Node<K,V> e = b; e != null; e = e.next) {
// 将列表节点转换为红黑树节点
TreeNode<K,V> p = new TreeNode<K,V>(e.hash, e.key, e.val, null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}
2.8 tryPresize(int size)
/**
* Tries to presize table to accommodate the given number of elements.
*
* @param size number of elements (doesn't need to be perfectly accurate)
*/
private final void tryPresize(int size) {
// 如果指定容量大小大于等于最大容量的一半,则设置为最大容量,否则扩大为size的两倍
int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
tableSizeFor(size + (size >>> 1) + 1);
int sc;
while ((sc = sizeCtl) >= 0) {
Node<K,V>[] tab = table; int n;
// 如果还未初始化,则进行初始化
if (tab == null || (n = tab.length) == 0) {
n = (sc > c) ? sc : c;
// 初始化tab的时候,把sizeCtl设为-1
if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if (table == tab) {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = nt;
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
}
}
/*
* 一直扩容到的c小于等于sizeCtl或者数组长度大于最大长度的时候,则退出
* 所以在一次扩容之后,不是原来长度的两倍,而是2的n次方倍
*/
else if (c <= sc || n >= MAXIMUM_CAPACITY)
break;
else if (tab == table) {
int rs = resizeStamp(n);
if (sc < 0) {
Node<K,V>[] nt;
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
/*
* transfer的线程数加一,该线程将进行transfer的帮忙
* 在transfer的时候,sc表示在transfer工作的线程数
*/
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
/*
* 没有在初始化或扩容,则开始扩容
*/
else if (U.compareAndSwapInt(this, SIZECTL, sc,(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
}
}
}
2.9 transfer(Node<K,V>[] tab, Node<K,V>[] nextTab)
/**
* Moves and/or copies the nodes in each bin to new table. See
* above for explanation.
*/
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n;
}
int nextn = nextTab.length;
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
if (finishing) {
nextTable = null;
table = nextTab;
sizeCtl = (n << 1) - (n >>> 1);
return;
}
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n; // recheck before commit
}
}
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
synchronized (f) {
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
if (fh >= 0) {
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
else if (f instanceof TreeBin) {
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
三、总结
在ConcurrentHashMap中,同步处理主要是通过Synchronized和unsafe两种方式来完成的。
在取得sizeCtl、某个位置的Node的时候,使用的都是unsafe的方法,来达到并发安全的目的
当需要在某个位置设置节点的时候,则会通过Synchronized的同步机制来锁定该位置的节点。
在数组扩容的时候,则通过处理的步长和fwd节点来达到并发安全的目的,通过设置hash值为MOVED
当把某个位置的节点复制到扩张后的table的时候,也通过Synchronized的同步机制来保证现程安全
本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 逐光の博客!
评论